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Uniform Asymptotic Expansions 
of the Incomplete Gamma Functions 

and the Incomplete Beta Function 

By N. M. Temme 

Abstract. New asymptotic expansions are derived for the incomplete gamma functions 
and the incomplete beta function. In each case the expansion contains the complemen- 
tary error function and an asymptotic series. The expansions are uniformly valid with 
respect to certain domains of the parameters. 

1. Introduction. The incomplete gamma functions are defined by 

(1 .1) wy(a, x)= J e-tta-ldt, R(a, x)= e-tta-1 dt. 

The parameters may be complex; but here we suppose a and x to be real, where a > 0 
and x > 0. Auxiliary functions are 

(1.2) P(a, x) = y(a, x)/r(a), Q(a, x) = r(a, x)Ir(a), 

and from the definitions it follows that 

(1.3) 'y(a, x) + r(a, x) = r(a), P(a, x) + Q(a, x) = 1. 

For large values of x we have the well-known asymptotic expansion, 

I(a, x) , xa-1e-x{1 + (a - 1)Ix + (a - 1)(a - 2)1x2 + . . .}. 

See for instance Dingle [1 ] or Olver [3]. If both x and a are large, this expansion is 
not useful, unless a = o(x). For large values of a, we can better use the function 
,y(a, x). From (1.1) we obtain the elementary result 

00- 

^y(a, x) = e7Xxar(a) E xn/r(a + n + 1). 
n=0 

This series converges for every fmite x. It is useful for a - o and x = o(a), since un- 
der this condition the series has an asymptotic character. 

Expansions with a more uniform character are given by Tricomi [4], who found 
among others 

y(a + 1, a + y(2a)'A)/Ir(a + 1) = ?h erfc(-y) - 1(2/ar)'/2(1 + y2) exp(-y2) 

(1.4) + O(a-1), y, a real, a + oo. 

This expansion is uniformly valid in y on compact intervals of R. The function erfc is 
the complementary error function defined by 
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(1.5) erfc(x) = 27r-2f et2 dt. 

It is a special case of r(a, x), namely erfc(x) = 7r-/2r(Q, x2). Some results of Tricomi 
are corrected and used by Kolbig [2] for the construction of approximations of the ze- 
ros of the incomplete gamma function -y(a, x). 

An important book with many results on asymptotic expansions of the incom- 
plete gamma functions is the recent treatise of Dingle [1]. Apart from elementary ex- 
pansions, Dingle gives also uniform expansions and, in particular, he generalizes the re- 
sults of Tricomi (p. 249 of [1]). Dingle does not specify the term "uniform", but it 
can be verified that the same restrictions on y must hold as for (1.4). 

In Section 2 we give new asymptotic expansions for y(a, x) and r(a, x), holding 
uniformly in 0 < x/a for a -o and/or x oo. In Section 3 an analogous result for 
the incomplete beta function is given. 

A recent result of Wong [5] may be connected with our results. Wong considers 
integrals of which the endpoint is near by a saddle point of the integrand, and he ap- 
plies his methods to the function Sn(x) defined by 

n 

enx = E (nx)r/r! + (nx)nSn(x)/n!. 
r=O 

The function Sn is a special case of the incomplete gamma function and the asymptotic 
expansion of Sn(x) for n oo, x - 1 is expressed by Wong in terms of the error func- 

tion. (Wong interpreted his results only for 0 S x S 1, but not across the transition 
point at x = 1.) 

2. Uniform Asymptotic Expansions. The integrals (1.1) are not attractive for de- 
riving uniform expansions. Therefore, we write P as 

(2.1) P(a, x) = 24| -ijexsso (s + l)ads, c > 0, 

in which (s + l)-a will have its principal value which is real for s > - 1. Formula (2.1) 
can be found in Dingle's book. Here we derive it by observing that the Laplace trans- 
form of dP(a, x)/dx is (s + 1)-, from which it follows that (s + Iyas-1 = 

L(P(a, - )), which can be inverted to obtain (2.1). Taking into account the residue at 
s = 0, the contour in (2.1) can be shifted to the left of the origin; and so a similar in- 
tegral for Q can be given. With (1.3) and some further modifications we arrive at 

(22) Q(a, x) = e ( Cc+ioeab(t) t < c <0<< , 
27ri J-ioo X t' 

where 

(2.3) ?(t) t - 1 - ln t, X =x/a. 

The contour in (2.2) will be deformed into a path in the s-plane which crosses 
the saddle point of the integrand. The saddle point to follows from qP'(to) = 0. Hence 

t = 1, (to) = q'(to) = 0 and '"(to)= 1. 
The steepest descent path follows from Im ?(t) = Im 0(to) = 0, and, by writing 

t = a + ir (a, r E R) we obtain 

(2.4) a = r ctg r, -r < r<7T. 
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Let temporarily X > 1, that is x > a. Then the contour in (2.2) may be shifted into 
the contour L in the t-plane defined by (2.4). According to Cauchy's theorem, the in- 
tegral in (2.2) remains unaltered; and on L, the values of ?(t) are real and negative. 
Next we define the mapping of the t-plane into the u-plane by the equation, 

(2.5) - Y2U2 = o(t) 

with the condition t E L corresponds with u E R, and u < 0 if T < 0, u > 0 if r > 0. 
The result is 

e-ao(x) 00 ___au _d_d (2.6) Q(a, x) = I e-/au dt)U, > 1. 
27ri J-o du X- t' 

The presence of the pole at t = X in the integrand of (2.6) is somewhat disturbing, but 
we will get rid of it by writing 

(2.7) dt 1 dt 1 + 1 1 
du X -t du X -t u -u1 u -ul' 

where u1 is the point in the u-plane corresponding to the point t = X in the t-plane. 
That is, - Y/2ul = ?(X), hence ul = + i4(X))2?. There still is an ambiguity in the sign. 
However, the correct sign follows from the conditions imposed on the mapping defined 
in (2.5). In fact, we have 

(2.8) ul = i(I - X){2(X - 1 - ln X)/(1 - X)2}1?2 

where the square root is positive for positive values of the argument. The first two 
terms at the right-hand side of (2.7) constitute a regular function at t = .X, and with 

this partition we obtain 

e-a 04X 0 
1/2au2 du 

(2.9) Q(a,x)=-2 e +R(a,x), 

(2.10) I dt2ri __ {du)- t du1 } 

and the integral in (2.9) can be expressed in terms of the complementary error function 
defined in (1.5), so that 

(2.11) Q(a, x) = 1/2erfc(a?2) +R(a,x), 1= 2uu2 . 

From erfc(x) + erfc(- x) = 2 it follows that 

(2.12) P(a, x) = I2erfc(- a?2) - R(a, x). 

So far, the results in (2.11) and (2.12) are exact, since no approximations were 
used. In order to obtain asymptotic expansions for P(a, x) and Q(a, x), the function 

R(a, x) will be expanded in an asymptotic series. The integrand of R(a, x) is a holo- 

morphic function in the finite u-plane for every X > 0. If we put the expansion, 
dt 1 1 

0 

(2.13) du X -t ? u-u = Ck(X)Uk 

in (2.10), and, if we reverse the order of summation and integration, by Watson's lem- 
ma [3], we obtain the expansion 
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(2.14) R(a, x) eax)ri E C2k(x)r(k + %)(a)yk?. 

(The conditions for Watson's lemma are certainly satisfied since the function in (2.13) 
is bounded for large real values of u.) 

Each coefficient ck(X) is an analytic function of X near X = 1, and the expansion 
(2.14) is not only valid near X = 1 but for all X > 0. That is to say, we can fix x and" 
let a tend to infinity, or conversely. Also, x and a may grow dependently or indepen- 
dently of each other. 

The first few coefficients are 

Co(X) =)-1 -uX Co(l) = - 3-X 

_ i(X2 + 1OX + 1) 1 (1)= L 
c2 (X)= 12(X - 1)3 3~ -20 40 

Our expansion is more powerful than those of Tricomi and Dingle. Tricomi's for- 
mula (1.4) follows from our expansion by expanding (2.12) for small values of 1 - X. 
Moreover, for the complete expansion, Tricomi and Dingle obtained an infinite series, 
of which each term contains functions related to the error function. In our expansion, 
the information about the nonuniform behavior of the incomplete gamma functions is 
contained in just one error function. Besides, we obtain expansions for both P and Q. 
Of course, the coefficients c2k(X) in (2.14) are more complicated than the coefficients 
in the other expansions. 

As remarked before, the expansion (2.15) is also valid for fixed a and x oo, in 
spite of the nature of the series containing terms with negative powers of a. The coef- 
ficients, however, depend on x and a; and, in fact, we can say that the sequence {dk}, 
dk = c2k()a-k, is an asymptotic sequence. That is, dk+ I = o(dk) if one (or both) 

of the parameters a and x is (are) large uniformly in xla > 0. 

3. The Incomplete Beta Function. The incomplete beta function is defined by 

(3.1) Ix(p q) = B(p, ) ft 
) 

with Re p > 0, Re q > 0,'0 S x < 1, and 

(3.2) B(p, q) = r(p)r(q)/r(p + q). 

The function in (3.2) is called the beta function. Again, we consider real variables x, 
p and q, and we will derive an asymptotic expansion of Ix(p, q) for large p and q uni- 

formly valid for 0 < 6 < x < 1. 

We first give an integral representation of Ix which resembles those for the incom- 

plete gamma function. Formula (3.1) is equivalent to 

(3.3) Ix(p, q) = B(p, q)iJ l e"N(1 - e t)q-1 dt; 

and also, we have 

(34) B(p, ) 0 CPI(l- Cy-' dt 
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from which follows, by using the same technique as in the foregoing section, 

.,(p q) 2iiB(p, q) i- e s X ( ds, O < c < p. 

This expression can be written as 

(3.) I(p q) = 
eqBp,q 

'P 
-F 

) 2rz i B(pt q) rjo qqtF(t) dti 

with p(t) = t ln(t/x) - (1 + t) ln(I + t) -ln(I -x), 

(3.6) 
q F(g t)e~(q)t t = plq, andO0< c< tl. F (q + qt)e(l)( + qt)-q (1 + t) t PS 

Fq(t) is a slowly varying function as q - oo, on compact subsets of larg ti < T, t $ 0. 
Of course, its construction is based on the Stirling approximation of the gamma func- 
tion. For larg ti < rr, t $ 0, we have 

(3.7) Fq(t) {(+ t)/t}?(1 + O(q-1)), q -* oo, t fixed. 

With 

(3.8) to = x/(1 + x), xo = p/(p + q), 

to is a saddle point of 4, and if x = xo, this saddle point coincides with the pole at t1. 
The calculation of the saddle point to is based on the assumption that the gamma 

functions in Fq(t) in (3.6) have large arguments. Hence, for small values of x, which 
correspond to small values of to, the calculation is based on false assumptions. There- 
fore we only consider positive values of x. It is not necessary to have a uniform bound 
from zero of x. We are even allowing those values of x with qx - oo. 

From now on, details will be omitted, since the method is exactly the same as 
the one used in the foregoing section. We put - -/2u2 = ;(t) and the results are 

(3.9) Ix(p, q) = 1/2 erfc(- (q/2)V/2r) + Sx(p, q), 

(3.10) = (x - xo)[2q-1 {p ln(xo/x) + q ln((1 - xo)/(l - x))}I(x - xO)21/2. 

The square root is positive for positive values of its argument. The function Sx is de- 
fined by 

(3.11) Sx(p, q) x 2( 7 TxB(q)6 q Cf u 
G(u)du, 

Fq (t) dt Fq(tl) (3.12) G(u) = +_ - q 
t1 - t du u - u 

For u1 we have - 1/2u =4(t1), u2 i= . 
The role of the parameter X of the foregoing section is now played by (x - xo). 

We have 

-p + q (p + q V(x -x + I- pq (x - x ) + O(x _ XO)2 
q P 3 p 
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for x xI. An asymptotic expansion of S. is obtained by expanding G(u) = E dkUk, 
giving 

(3.13) Sx(p, q) x(1 x) r(p) + q q d2kr(k + )(-hq) 

(3.14) d ~~~q(tO) X?1 Fq(ti) 
(3.14) to = i-toq_ 0 1 x x -x u 

The expansion holds for p -? and/or q oo, uniformly in 6 < x < 1, where 6 may 
depend on q, such that q- n. 

A more transparent first approximation for Sx(p, q) is obtained by replacing the 
functions F. in (3.14) by the approximation (3.7). The result is 

SM(pg q) = {p/[2irq(p + q)I}?2(x/xo)P {(1 - x)(I - xo)}q 

{( -XO)/(Xo -X) + ix lX-Y2}(1 + O(qi1)), q - 
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